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ABSTRACT 

This study develops an approach to model the pedestrian-level wind speed at high spatial 
resolution within urban areas. The aerodynamic properties of urban areas are a necessary component 
in current urban planning and design. However current numerical modelling methods, such as 
Computational Fluid Dynamics (CFD), cannot balance modelling cost with result accuracy to satisfy the 
requirements of urban design at the neighborhood scale. Alternatively, current morphological models, 
algorithms that correlate urban geometries with aerodynamic properties, are inexpensive but can only 
provide results with low spatial resolution. This study describes the balance between the momentum 
transfer and drag force in both an averaged sense over an area and a moving air particle to extend 
conventional frontal area density (ߣ௙) to a point-specific parameter (ߣ௙_௣௢௜௡௧). Through correlation with 
data from wind tunnel experiments, ߣ௙_௣௢௜௡௧  is determined to be a good index to assess the 
pedestrian-level wind speed at a test point with multiple input wind directions. Regression equations are 
developed to map the pedestrian-level wind environment at 1m × 1m pixel resolution. This 
modelling-mapping approach requires less computational time and support technology than CFD 
simulations. Meanwhile, from a practical point of view, the modelling method provides accurate results 
at high resolution. Therefore, the modelling results of the urban wind environment can be well integrated 
into the neighborhood-scale design. Using this approach, urban planners can estimate the 
neighborhood-scale pedestrian-level wind speed and optimize proposed planning at the onset of the 
planning procedure. 

 
Keywords: Fine-scale wind estimation, Momentum transfer, Urban design and planning 

1. INTRODUCTION  

Due to rapid urbanization and depletion of natural resources, high-density urban living that better 
use natural resources is an inevitable growing trend. However, closely packed high-rise buildings often 
result in stagnant airflow in high-density urban areas, which has been associated with increased 
exposure to ambient air pollution and outdoor thermal discomfort (Cheng et al., 2011; Y. Tominaga & 
Stathopoulos, 2009). Therefore, improvement of the urban environment using wind flow and dispersion 
information is among the fundamental tasks of high-density urban planning. In this study, we aimed to 
develop a fine-scale morphological modelling-mapping approach to provide pedestrian-level wind 
information between buildings, which could enable more efficient decision-making in urban planning 
and design. This approach not only could avoid high computational costs as opposed to what 
Computational Fluid Dynamics (CFD) simulation requires(Yoshihide Tominaga et al., 2008), it could 
also increase the resolution of the wind environment map to several meters, compared with the hundred 
meters resolution in the conventional morphological models (Gál & Unger, 2009; Ng et al., 2011; Wong 
et al., 2010). Consequently, our new approach could bridge the gap between the current modelling 
methods and requirements of practical planning and design.  

2. LITERATURE REVIEW 

Using a combination of numerical models in different scales, such as Weather Research and 
Forecasting (WRF) and Computational Fluid Dynamics (CFD), one can describe the urban air flow 
features and study outdoor urban wind environment (Bentham and Britter, 2003). However, numerical 
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comfort and air quality (Coceal & Belcher, 2005). As a result, a more refined morphological model is 
needed for applications at the neighborhood scale.  

3. MODEL DEVELOPMENT   

3.1 Relating ࢌࣅ to the pedestrian-level wind speed at high density areas 

Given the steady and uniform air flow, there is a balance between the drag force of buildings on 
the air flow and turbulent momentum transfer downward from above as:   ܦߩ = −ρ డడ௭  (1)                                       〈ᇱതതതതതതݓᇱݑ〉

where ܦߩ is the canopy drag force, the body force per unit volume on the spatially averaged 
flow, and ρ〈ݑᇱݓᇱതതതതതത〉 is the momentum flux caused by turbulent mixing. The momentum flux by turbulent 
mixing can be considered as shear stress (߬௪) that is given by Zhang et al. (2014): డడ௭ ߬௪ = ߩ	− డడ௭   (2)                                    〈ᇱതതതതതതݓᇱݑ〉

The total canopy drag force (ρD) is given by (Bentham & Britter, 2003):T ܦߩ = ଵଶ ߩ ௖ܷଶ ∑ (஼ವ஺೑ೝ೚೙೟)೚್ೞ೟ೌ೎೗೐௛஺ೞ೔೟೐(ଵିఒ೛)                              (3) 

where ܣ௙௥௢௡௧ is the frontal area, ௖ܷ is the averaged wind speed in the canopy layer, and ܥ஽ is 
the drag coefficient. The air volume is given by ℎܣ௦௜௧௘(1 −  ௦௜௧௘ is the site area, h is theܣ ௣), whereߣ

canopy height, and ߣ௣ is the site coverage ratio. Substituting the expression for ߩ డడ௭  (equation 2) 〈ᇱതതതതതതݓᇱݑ〉

and ρD (equation 3) into equation (1) yields another statement of the balance between canopy drag 
and vertical transfer of horizontal momentum in height z: డడ௭ ߬௪ = 	 ଵଶ ߩ (ܷ௭)ଶ ∑ ஽(௭)௢௕௦௧௔௖௟௘ܥ) ௗ஺೑ೝ೚೙೟ௗ௭ ௦௜௧௘(1ܣ/( −   ௣)        (4)ߣ

It should be noted that the right side of equation (4) is the sectional drag acting only at height z, 
where ௭ܷ is the wind speed at height z and ܥ஽(௭) is the sectional drag coefficient (Coceal & Belcher, 
2004). Cheng and Castro (2002) found that ܥ஽(௭) is equal to 2.0 near the top because air can flow over 
and around roughness elements at the top, and ܥ஽(௭) increases to 3.0 over the remaining depth, since 
the air only can flow around roughness elements in the remaining depth, i.e. the sectional drag is 
enhanced. Given the deep street canyon, we set ܥ஽(௭) equal to 3.0 in this study. Consequently, the 
wind speed ( ௜ܷ) in the ith layer of the street canyon is given by re-arranging equation (4) as:  

௜ܷ = (	ఛೢ,೔ଷఘ ∙ ଶ	(ଵିఒ೛)ఒ೑,೔ )଴.ହ,			(where	ߣ௙,௜ = 	 ஺೑ೝ೚೙೟,೔஺ೞ೔೟೐ )          (5) 

Bentham and Britter (2003) ignored the vertical variation of ߬௪,௜ by using the equivalent surface 
shear stress (߬௪) and considered ܥ஽ is equal to 1.0. They treated the air volume between two rows of 
buildings as the control volume, therefore ߣ௣ in equation 5 is equal to 0. Consequently, they provided a 
practical method to estimate the averaged velocity in the urban canopy ௖ܷ as: 

௎಴௨∗ = (ఒ೑ଶ )ି଴.ହ, (where	ݑ∗	is	equal	to	 ቀఛఘೢ ቁ଴.ହ)	           (6) 

Equation (5) relates the wind speed ( ௜ܷ) to the corresponding values of ߣ௙,௜, ignoring the vertical 
variation of ߬௪,௜ as Bentham and Britter (2003) did. This understanding is consistent with MacDonald et 
al. (1998): the frontal area density above the displacement height (ݖௗ), ߣ௙∗  , can better estimate the wind 
profile than ߣ௙; on the other hand, the near-ground wind speed is postulated to depend on ߣ௙ᇱ 	, the 
frontal area density below ݖௗ, instead of ߣ௙∗ . Ng et al. (2011) defined the podium layer (0m - 15m) in 
Hong Kong due to the podium morphological characteristic as shown in Figure 2, and considered that 
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Based on the above evaluation, urban planning and design strategies can be tailored to address 
specific wind environment issues at different zones. New development projects should not be allowed at 
the purple zone, and should be strictly controlled at the yellow zone with the detailed study of AVA 
evaluation. Given the low air pollutant dispersion in the purple and yellow zones, planners should not 
arrange additional bus stops, terminus, heavy traffic roads, or other land use with pollutant sources at 
these zones to avoid trapping the emitted air pollutant. On the other hand, new projects should be 
developed in the light green zone with cautions to avoid worsening the existing good wind environment. 
The public water front parks can be arranged at the dark green zone, given the good air quality and the 
outdoor thermal comfort. New bus stops, terminus, and other traffic facilities can be planned at this zone 
because the traffic -related air pollutant can be quickly dispersed.  

7. Conclusion and Future Work 

Upon broadly discussing the aerodynamic properties of urban areas and the corresponding 
planning principles, we developed a modelling–mapping approach to estimate the pedestrian-level wind 
speed in the neighborhood scale. High spatial resolution modelling results and low computational cost 
are two attractive features of this new approach. The key findings from this study are as following:  

 Given the balance between vertical flux of horizontal momentum and horizontal drag force in the 
street canyon layer by layer, we used the sectional frontal area density (ߣ௙ᇱ ) below zd to estimate 
the pedestrian level wind speed, particularly in the high density urban areas where the high 
buildings interfere with each other.  

 We developed ߣ௙_௣௢௜௡௧  to estimate the effect of the neighborhood wind permeability on a 
particular point. We adjusted ߣ௙ᇱ  by discussing the momentum transfer balance in a moving air 
particle. The distance index (L) is included into the morphological model to investigate the 
different effect of individual building on the wind speed at the target point.  

 We tested the accuracy of the new morphological model using statistical analysis, and develop 
two regression equations to form a semi-empirical assessment tool to evaluate the 
pedestrian-level wind environment. The performance of this new tool was quantified by 95% 
confidence interval and standard error. The accuracy of the modelling results is acceptable for 
the urban design purpose at both high and low density urban areas.   

 We discussed the different effects of regular and irregular street grids on the pedestrian-level 
wind speed, which are caused by different horizontal momentum transfer processes. In the 
regular street, air flow at the streets perpendicular to the wind direction is only driven by the 
limited horizontal momentum transferred from the street that is aligned with the wind direction.  

 We applied the new method to two case studies at Hong Kong to illustrate how the modelling 
results could be use in the planning and design practice for better evidence-based decision 
making at the early stage of city planning.  
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